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Abstract
This paper presents a modification of the dressing method which allows one
to construct the particular solutions for certain classes of (1 + 1)-dimensional
systems of partial differential equations, which are nonintegrable in the general
case. Examples of one- and two-soliton equations are given.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

Completely integrable (1 + 1)-dimensional nonlinear partial differential equations (PDEs)
have a wide application in mathematical physics. For instance, the nonlinear Shrödinger
equation describes propagation of a signal in a nonlinear fibre [1, 2], and the Korteweg–de
Vries (KdV) equation [3–6] and the Camassa–Holm (CH) equation [7–10] represent two
different long-wave approximations of the shallow-water system. There are many methods of
investigation applicable for (1 + 1)-dimensional integrable equations. In this paper we deal
with so-called dressing methods [11–17] which have been developed for the construction of
particular solutions of completely integrable nonlinear PDEs.

Although completely integrable nonlinear equations reflect many features of physical
systems, they represent only certain approximations of the original equations of mathematical
physics, which are nonintegrable in general. The methods of analytical study of nonintegrable
nonlinear PDEs are not well developed yet. In this paper we consider the problem of the
construction of the particular solutions for (1 + 1)-dimensional systems of nonlinear PDEs
without relation to the complete integrability. The method discussed below is a development
of the dressing method based on the algebraic system of equations [18, 19]
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L(ψm) ≡ ψm −
N∑
n=1

ψnRnm = ηm m = 1, . . . , N (1)

or matrix equation

L(ψ) ≡ ψ(I − R) = η det(I − R) �= 0,

ψ = [ψ1 . . . ψN ] η = [η1 . . . ηN ]
(2)

which in turn is a discrete version of the classical dressing method based on the
∂̄-problem [13–15]. Here I is an N × N identity matrix and R is an N × N matrix whose
properties will be discussed below; η is the 1 × N row which represents the right-hand side
of the matrix equation. The structure of the matrices R and η defines the particular system of
nonlinear PDEs, related with the given matrix equation (2).

The algorithm represented in [18, 19] relates the matrix equation (2) with the (n + 1)-
dimensional system of nonlinear PDEs, where n > 1. Some additional requirements on the
matrix R allow one to use the same algorithm for the study of (1 + 1)-dimensional systems of
nonlinear PDEs. In section 2 we present this algorithm for a particular choice of the matrices
R and η.

It is known that completely integrable equations admit n-parametric solutions, such as
n-soliton and n-kink (n is any integer). We will show (section 3) that even the requirement for
the nonlinear PDEs to possess one-parametric solution (either soliton or kink) generates many
restrictions on the coefficients of the general equation derived in section 2. Examples of scalar
equations which admit one- and two-soliton solutions are presented in section 3. Conclusions
are given in section 4. To avoid cumbersome formulae in the main text, we collect important
intermediate results in an appendix.

2. Dressing method for (1 + 1)-dimensional nonlinear PDEs

We present the algorithm which relates the matrix equation (2) with a particular system of
nonlinear PDEs. The form of the nonlinear system is defined by the matrices R and η of the
algebraic system.

First of all, one needs to introduce parameters x and t (independent variables of the
nonlinear system) into equation (2). This can be done in a number of ways. We consider an
example which results in the generalization of the KdV equation and the Burgers equation.
For this purpose let us introduce parameters x and t by the following formulae:

Rx = fg (3)

Rt = f0g + f1gx + f2gxx η = g

f = [f1, . . . , fN ]T g = [g1, . . . , gN ]

f0 = γ00f + γ01fx + γ02fxx f1 = γ10f + γ11fx f2 = γ20f

γij = const

(4)

with
ft = κ10f + κ11fx + κ12fxx + κ13fxxx

gt = κ20g + κ21gx + κ22gxx + κ23gxxx κij = const.
(5)

Equations (5) are linear differential equations for the functions g and f . They are resolvable
for all values of parameters κij . The system (3), (4) is overdetermined with compatibility
condition given by the formula

∂t (fg) = ∂x(f0g + f1gx + f2gxx). (6)

This equation produces relations among parameters γij and κij and restrictions on the solutions
of equations (5) (in general).
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Equations (3)–(5), which introduce the dependence on the parameters x and t into
the matrix equation (2), are fundamental. These equations together with compatibility
condition (6) represent the first factor which specifies the nonlinear system.

Now one needs to construct the auxiliary linear differential equation [18] (similar to the
classical dressing method [13–15]). For this purpose we take it that the following system of
linear matrix equations is held together with the original equation (2):

L(ψx) = U0g + gx (7)

L(ψxx) = (2U0x − U1)g + U0gx + gxx (8)

L(ψxxx) = (3U0xx − 3U1x + U2)g + (3U0x − U1)gx + U0gxx + gxxx (9)

L(ψt) = (U
(0)
0 + κ20)g + (U

(1)
0 + κ21)gx + (U

(2)
0 + κ22)gxx + κ23gxxx

U
(0)
0 = ψf0 = γ00U0 + γ01U1 + γ02U2

U
(1)
0 = ψf1 = γ10U0 + γ11U1 U

(2)
0 = ψf2 = γ20U0

(10)

Un = ψ∂nxf n = 1, 2, . . . . (11)

For instance, equation (7) follows from equation (2) if one differentiates it with respect to x and
uses equation (3) for Rx . To derive equation (8) one needs to differentiate equation (7) with
respect to x and use equation (3) for Rx , and so on. Having the system (2), (7)–(10) and using
the superposition principle for the linear matrix equations one can construct the homogeneous
matrix equation

L(ψt − κ23ψxxx + W2ψxx + W1ψx + W0ψ) = 0 (12)

where Wk are expressed through the functions Un by the formulae

W2 = −κ22 − U
(2)
0 + κ23U0

W1 = −κ21 − U
(1)
0 + κ23(3U0x − U1)−W2U0

W0 = −κ20 − U
(0)
0 + κ23(3U0xx−3U1x + U2)−W2(2U0x−U1)−W1U0.

(13)

Since det(I − R) �= 0 in equation (2), the only solution of the matrix homogeneous equation
L(χ) = 0 is χ ≡ 0. Then equation (12) produces the following linear PDE for the functionψ :

ψt − κ23ψxxx + W2ψxx + W1ψx + W0ψ = 0. (14)

The nonlinear system for the functions Un (see equation (11)) can be derived from the linear
equation (14) through multiplication by the vector ∂nxf :

Unt − κ10Un − κ11Un+1 − κ12Un+2 − κ13Un+3 − κ23(Unxxx − 3Un+1xx + 3Un+2x − Un+3)

+W2(Unxx − 2Un+1x + Un+2) + W1(Unx − Un+1) + W0Un = 0

n = 0, 1, 2, . . . . (15)

Equation (15) is a differential–difference equation with continuous variables x, t and discrete
variable n. To reduce it to the system of pure PDEs, one needs to consider Un (n = 0, 1, . . .)
as the set of different functions of variables x and t with subscript n and establish an additional
relation among the functions Un(x, t) with different n. For this purpose we construct another
differential-difference equation on the function Un, n = 1, 2, . . . (compare [18, 19]). The
straightforward method is to require that the matrix R satisfies the matrix equation of the
following general form:

RA = AR +
∑
k

fkgk fk = [f (k)
1 , . . . , f

(k)
N ]T gk = [g(k)1 , . . . , g

(k)
N ] (16)

Af = M
(k)
f f gA = M(k)

g g (17)
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where A = {aij } is a constant N × N matrix which will be specified below; fk = L
(k)
f f ,

gk = L(k)
g g; operators L(k)

f , L(k)
g , M(k)

f , M(k)
g are some linear differential operators. To achieve

the generalization of the KdV and Burgers equations one needs to take equations (16), (17) in
the following form:

RA = AR + f3g + f4gx f3 = γ30f + γ31fx f4 = γ40f + γ41fx (18)

Af = κ30f + κ31fx + κ32fxx gA = κ40g + κ41gx + κ42gxx

κij = const. γij = const.
(19)

Equations (19) fix the x-dependence of functions f . Equation (18) should be compatible with
equations (3), (4), which is provided by the additional condition

fgA − Afg = ∂x(f3g + f4gx) (20)

which gives rise to the relations between elements of the matrixA and parametersκij , γij . Equa-
tions (18) and (19) produce the second differential-difference equation on the functions Un.

We start construction of the second differential-difference equation with the construction
of the second auxiliary linear problem. This is possible because equation (18) provides one
more matrix equation:

L(ψA) = (U
(3)
0 + κ40)g + (U

(4)
0 + κ41)gx + κ42gxx (21)

which follows from equation (2) if one multiplies it by the matrix A and uses formulae
(18), (19). By using the superposition of the linear matrix equations (2), (7), (8), (21) one
can construct the following homogeneous matrix equation:

L(ψA− κ42ψxx + V1ψx + V0ψ) = 0 (22)

where Vk are given by the formulae

V1 = −κ41 − U
(4)
0 + κ42U0

V0 = −κ40 − U
(3)
0 + κ42(2U0x − U1)− V1U0

U
(3)
0 = γ30U0 + γ31U1 U

(4)
0 = γ40U0 + γ41U1.

(23)

The consequence of this equation is another linear PDE on the function ψ :

ψA− κ42ψxx + V1ψx + V0ψ = 0. (24)

The nonlinear differential-difference equation can be derived by multiplication of equation (24)
by the vector ∂nxf and using the definition of the functions Un given by equation (11):

(κ32 − κ42)Un+2 + κ31Un+1 + κ30Un − κ42(Unxx − 2Un+1x) + V1(Unx − Un+1) + V0Un = 0.

(25)

Now the complete system of nonlinear PDEs on the functionsUn, (n = 1, . . . , 5) is represented
by equations (15) with n = 0, 1 and (25) with n = 0, 1, 2, 3.

If, in addition,

κ42 = κ32, (26)

then the complete system of nonlinear PDEs on the functions u = U0, u1 = U1, u2 = U2 is
represented by the system (15) with n = 0 and (25) with n = 0, 1, 2:

ut − κ10u− κ11u1 − κ12u2 − κ13u3 − κ23(uxxx − 3u1xx + 3u2x − u3)

+W2(uxx − 2u1x + u2) + W1(ux − u1) + W0u = 0 (27)

κ31u1 + κ30u− κ42(uxx − 2u1x) + V1(ux − u1) + V0u = 0 (28)

κ31u2 + κ30u1 − κ42(u1xx − 2u2x) + V1(u1x − u2) + V0u1 = 0 (29)

κ31u3 + κ30u2 − κ42(u2xx − 2u3x) + V1(u2x − u3) + V0u2 = 0 (30)

where Wi and Vi are given by equations (13) and (23).
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2.1. Reduction to the single nonlinear equation

The system of equations (27)–(30) admits reduction which results in the single PDE. In fact,
one can check that equation (28) admits solution in the form

u1 = α1u + α2ux + α3u
2 (31)

provided that αi , i = 1, 2, 3, satisfy the following system of equations:

(α2 − 1)α2γ41 = 0 (32)

(α2(1 + 2α3)− α3)γ41 = 0 (33)

(α3 + 1)α3γ41 = 0 (34)

(2α2 − 1)κ32 = 0 (35)

α3(γ40 − γ31 + 2α1γ41 − 2κ32) + γ40 + α1γ41 − κ32 = 0 (36)

α2(γ40 − γ31 + 2α1γ41 − 2κ32)− γ40 − α1γ41 + (3 + 4α3)κ32 = 0 (37)

κ30 − κ40 + α1(κ31 + κ41) = 0 (38)

α2(κ31 + κ41) + 2α1κ32 − κ41 = 0 (39)

α1(γ40 − γ31 − 2κ32)− γ30 + α2
1γ41 + α3κ31 + κ41 + α3κ41 = 0. (40)

If one substitutes u1, given by equation (31), and u2x from equation (29) into (27), and imposes
the following relations:

κ23 − κ13 = 0 3α2γ41κ23 = 0 3α3γ41κ23 = 0 (41)

κ32(κ23 − 2γ02 − 2γ20) + 3γ40κ23 + 3α1γ41κ23 = 0 (42)

3κ23(κ31 + κ41)− 2κ32(κ12 + κ22) = 0 (43)

κ32 �= 0 (44)

in addition to the relations (32)–(40), then all terms withu2 andu3 disappear from equation (27),
resulting in the following equation on the function u:

ut + r11ux+r1u+r2uxx + r3uxxx+r4u
2
x+r5uux+r6uuxx+r7u

2 + r8u
2ux + r9u

3 + r10u
4 = 0

(45)

where arbitrary parameters ri are expressed in terms of parameters κij , γij and αi by the
formulae (97)–(107). Hereafter we assume that r11 = 0, since the corresponding term in
equation (45) can be eliminated by redefinition of the variable t .

Note that equation (45) has been derived only by using equations (2)–(5) and (18), (19).
We have not used the compatibility conditions (6) and (20), which are necessary in order to
provide the non-empty manifold of particular solutions for equation (45). It will be shown in
the next section that the compatibility conditions give rise to the relations among parameters ri .

3. Particular solutions and related reductions of equation (45)

Important reductions of the nonlinear equation (45) are produced by the compatibility
conditions (6) and (20) whose exact forms depend on both the structure of matrix A and
the dimension N of the matrix equation (2). Hereafter we will deal with the diagonal matrix
A = diag(a1, . . . , aN).

Note that equations (5), (19) admit the functions f and g in the following form:

f =



f1ek11x+k12t

...

fNekN1x+kN2t


 g = [ g1eω11x+ω12t . . . gNeωN1x+ωN2t ] (46)
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where ωij and kij are solutions of the characteristic equations, related with the differential
equations (5), (19):

ai = κ30 + κ31ki1 + κ32k
2
i1 (47)

ai = κ40 + κ41ωi1 + κ42ω
2
i1 (48)

ωi2 = κ20 + ωi1κ21 + ω2
i1κ22 + ω3

i1κ23 (49)

ki2 = κ10 + ki1κ11 + k2
i1κ12 + ω3

i1κ13 i = 1, . . . , N. (50)

Let

κ30 = (κ2
31 + 4κ32κ40 − κ2

41)/(4κ32) (51)

to simplify solution of the above characteristic equations, and introduce parameters bi instead
of ai by the formula

ai = (b2
i κ

2
42 + 4κ42κ40 − κ2

41)/(4κ42) i = 1, . . . , N. (52)

Then the compatibility conditions (6) and (20) can be represented in the following form:

(ωi1 + ki1)(γ30 + γ40ωi1 + γ31ki1 + γ41ωi1ki1) = 0
κ32

4
(b2

i − b2
j )− γ30ωi1 − γ40ω

2
i1 − γ30kj1 − γ31ωi1kj1

−γ40ωi1kj1 − γ41ω
2
i1kj1 − γ31k

2
j1 − γ41ωi1k

2
j1 = 0

γ00ωi1 + γ10ω
2
i1 + γ20ω

3
i1 − ωi2 + γ00ki1 + γ01ωi1ki1 + γ10ωi1ki1 + γ11ω

2
i1ki1

+γ20ω
2
i1ki1 + γ01k

2
i1 + γ02ωi1k

2
i1 + γ11ωi1k

2
i1 + γ02k

3
i1 − ki2 = 0

γ00ωi1 + γ10ω
2
i1 + γ20ω

3
i1 − ωi2 + γ00kj1 + γ01ωi1kj1 + γ10ωi1kj1 + γ11ω

2
i1kj1

+γ20ω
2
i1kj1 + γ01k

2
j1 + γ02ωi1k

2
j1 + γ11ωi1k

2
j1 + γ02k

3
j1 − kj2 = 0

i, j = 1, . . . , N i �= j

(53)

which will be used hereafter. One can see that the number of equations in system (53) increases
with dimension N of the matrix equation (2) and equals 2N2. Depending on the number
of equations in system (53), one has different relations among parameters κij and γij and,
consequently, different reductions for the nonlinear PDE (45). Two examples with N = 1
and 2 will be considered below.

Note that along with formula (11) the following relation may be used for the construction
of particular solutions of equation (45)

u = −∂x ln(det(I − R)) (54)

which is more convenient for calculations. Here I is an N ×N identity matrix and matrix R

is related with f and g by the equation

R = ∂−1
x fg (55)

which follows from equation (3).

3.1. One-soliton equations

We consider an example of nonlinear PDEs which admit at least one-parametric solution. Let
N = 1 in equation (2), A = a1 ≡ a. We will use the following solution of the characteristic
equations (47), (48):

ω11 = bκ32 − κ41

2κ32
k11 = bκ32 − κ31

2κ32
(56)
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where parameter b ≡ b1 is introduced by equation (52). Then the compatibility condition (53)
becomes a system of two equations and can be solved, for instance for parameters κ20 and γ02

(see appendix, equations (108), (109)). The system (32)–(40) admits the following solution:

γ31 = −γ40 γ41 = 0

α1 = (κ41 − κ31)/(4κ32)

α2 = 1
2 α3 = −1

2

(57)

and the system (41)–(44) can be solved, for instance for κ13, κ12 and γ02:

κ13 = κ23 κ12 = (−2κ22κ32 + 3κ23(κ31 + κ41))/(2κ32)

γ02 = −γ20 +
κ23(κ32 + 3γ40)

2κ32
.

(58)

After substitution of the set of relations (108), (109), (57) and (58) into equations (97)–(107)
one gets the following set of relations among the coefficients ri of equation (45):

r7 = (27r1r
3
3 − 27b3r3

3 (6r3 + r4 + r6) + r2
2 (r2r4 − 3r3r5 + r2r6)

−9br2r3(−2r3r5 + r2(2r3 + r4 + r6))

+27b2r2
3 (−(r3r5) + r2(4r3 + r4 + r6)))/(9r

2
3 (−r2 + 3br3)) (59)

r8 = −12r3 − 2r4 − 3r6 (60)

r9 = −2r2 − r5 (61)

r10 = 6r3 + r4 + r6 (62)

where ri (i = 1, . . . , 6) are arbitrary parameters.
Now we construct the solution of equation (45), related with the scalar algebraic

equation (2). One gets from equations (46) and (55)

f = f1eω11x+ω12t g = g1ek11x+k12t R = f1g1

ω11 + k11
e(ω11+k11)x+(ω12+k12)t (63)

where parameters ω1j and k1j (j = 1, 2) are related with parameters κij , γij and b by the
formulae (49), (50) and (56), and the function u (54) is the travelling wave solution which can
be written in the form

u = A

α
tanh(α(x − vt + φ)) (64)

or

ux = A

cosh2(α(x − vt + φ))
(65)

α = 1
2 (ω11 + k11) (66)

A = −α2 = − 1
4 (ω11 + k11)

2 v = −ω12 + k12

ω11 + k11
(67)

φ = ln(−f1g1/(2α))

2α
sign(α) �= sign(f10g10). (68)

One can see that equation (64) represents a kink, and its x-derivative, given by equation (65),
is a soliton. For the analysis we will use the x-derivative of the function u rather than function
u itself. In accordance with this we call A and v amplitude and velocity of the travelling wave
solution respectively. Relations (108), (109) and (57), (58) reduce formulae (66) and (67) to
the following ones:
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α = 3r3b − r2

6r3
(69)

A = − (3r3b − r2)
2

36r2
3

(70)

v = 2r3
2 − 9br2

2 r3 + 27r2
3 (b

3r3 + r1)

9r3(3br3 − r2)
. (71)

Let us use the square root of the negative amplitude as independent parameter B = √−A and
express the velocity in terms of this parameter. For this purpose one needs to solve equation (70)
for b and substitute it into equation (71). One has

b± = 1

3

(
r2

r3
± 6B

)
α = B (72)

v± = 4B2r3 ±
( r1

2B
+ 2Br2

)
A = −B2. (73)

Formulae (59) and (64) show that the parameter b appears in both the equation and its
solution. This means that equation (45) with relation among coefficients ri given by the
system (59)–(62) admits only one solution constructed by the algorithm developed in this
section. In the particular case if

r1 = 0 r5 = −2r2 r6 = −6r3 − r4 (74)

parameter b disappears from equation (45) so that it has one-parametric solution (64). This
equation has the following form:

ut + r2(uxx − 2uux) + r3uxxx + r4u
2
x − (r4 + 6r3)(uuxx − u2ux) = 0. (75)

This becomes an integrated KdV equation if r2 = 0 and r4 + 6r3 = 0. If r4 = −3r3,
equation (75) becomes a differentiated Burgers-type equation which can be linearized by the
Hopf substitution u = −(ln f )x [20, 21].

3.2. Two-soliton equations

In this section we consider an example of PDEs which admit both one- and two-parametric
solutions. LetN = 2 in equation (2) and A = diag(a1, a2). We will use the following solution
of the characteristic equations (47), (48):

ωi1 = biκ32 − κ41

2κ32
ki1 = biκ32 − κ31

2κ32
i = 1, 2 (76)

where parameters b1 and b2 have been introduced by equation (52). Then the system (53),
which represents compatibility condition, can be solved, for instance for the parameters
κ20, κ21, κ11, γ01, γ30, γ31, γ40, γ41 (see appendix equations (110)–(117)). With the found
expressions for γ31, γ40 and γ41 the system (32)–(40) has the following solution:

α1 = (−κ31 + κ41)/(4κ32) α2 = 1
2 α3 = −1

2 (77)

and system (41)–(44) can be solved for κ13, κ12 and γ02

κ13 = κ23 κ12 = (−2κ22κ32 + 3κ23(κ31 + κ41))/(2κ32)

γ02 = −γ20 +
κ23(κ31 − 4b1κ32 − 4b2κ32 + κ41)

2(κ31 − b1κ32 − b2κ32 + κ41)
.

(78)
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Substituting expressions (110)–(117), (77) and (78) into equations (97)–(107) one gets the
following set of relations among the coefficients ri of equation (45):

r4 = (3r3(−2r3
2 + 12(b1 + b2)r

2
2 r3 − 18(b2

1 + 3b1b2 + b2
2)r2r

2
3

+9r2
3 (6r3b1b2(b1 + b2)− r1)))/(((r2 − 3b1r3)(r2 − 3b2r3)

×(2r2 − 3(b1 + b2)r3)) (79)

r5 = −2(r3
2 − 3(b1 + b2)r

2
2 r3 + 9r1r

2
3 + 9b1b2r2r

2
3 )

(r2 − 3b1r3)(r2 − 3b2r3)
(80)

r6 = 6r2r3

−2r2 + 3(b1 + b2)r3
(81)

r7 = 3r1r3(5r2
2 − 15(b1 + b2)r2r3 + 9(b2

1 + 3b1b2 + b2
2)r

2
3 )

(r2 − 3b1r3)(r2 − 3b2r3)(−2r2 + 3(b1 + b2)r3)
(82)

r8 = 6r3(r
3
2 − 3(b1 + b2)r

2
2 r3 + 9r1r

2
3 + 9b1b2r2r

2
3 )

(r2 − 3b1r3)(r2 − 3b2r3)(2r2 − 3(b1 + b2)r3)
(83)

r9 = 18r1r
2
3

(r2 − 3b1r3)(r2 − 3b2r3)
(84)

r10 = 27r1r
3
3

(r2 − 3b1r3)(r2 − 3b2r3)(−2r2 + 3(b1 + b2)r3)
(85)

where parameters r1, r2, r3 are arbitrary.
Let us construct the solution of equations (45). The exact formula for this solution may

be obtained from equation (54) by using the representation (46) for the functions f and g with
N = 2 and equation (55):

u ≡ U0 = −∂x ln(det(I − R)) (86)

f =
[
f1ek11x+k12t

f2ek21x+k22t

]
g = [ g1eω11x+ω12t g2eω21x+ω22t ] R = ∂−1

x fg (87)

where parameters ωij and kij are related with parameters γij and κij by equations (49), (50)
and (76). One gets the following expression for u:

u = −∂x ln

(
1 − f1g1

k11 + ω11
eη1 − f2g2

k21 + ω21
eη2 + ϕ

f1f2g1g2

(k11 + ω11)(k21 + ω21)
eη1+η2

)

ηi = 2αi(x − vit)

(88)

αi = 1
2 (ωi1 + ki1) = 3r3bi − r2

6r3
(89)

vi = −ωi2 + ki2

ωi1 + ki1
= 2r3

2 − 9bir2
2 r3 + 27r2

3 (r1 + b3
i r3)

9r3(3bir3 − r2)
i = 1, 2 (90)

ϕ = (k11 − k21)(ω11 − ω21)

(k11 + ω21)(k21 + ω11)
= 9(b1 − b2)

2r2
3

(2r2 − 3(b1 + b2)r3)2
. (91)

Function u constructed in this way represents a two-kink solution of the nonlinear equation.
The derivative, ux , describes two solitons. In the case of elastic interaction (ϕ �= 0) these
solitons are far from each other as t → ±∞. Their amplitudes and velocities are given by the
formulae (70)

Ai = − (3r3bi − r2)
2

36r2
3

i = 1, 2 (92)
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and (90). The only result of the elastic interaction are phase shifts ϕ̃1 and ϕ̃2 of solitons which
are equal to

ϕ̃i = −sign(αj (vi − vj ))
ln(ϕ)

2αi
i = 1, 2 i �= j (93)

where αi , vi and ϕ are given by equations (89)–(91). One can see that parameters b1 and
b2 appear in both coefficients of equation (45) and solution (88), which means that we can
construct only one solution for equation (45) with relations among coefficients ri given by the
system (79)–(85). If r1 = r2 = 0, then parameters b1 and b2 disappear from equation (45) in
which case it becomes integrated KdV:

ut + r3(uxxx − 6u2
x) = 0 (94)

with the two-parametric solution given by equation (88). If r1 = r3 = 0, one gets the
differentiated Burgers equation

ut + r2(uxx − 2uux) = 0. (95)

The solution (88) is a two-kink solution with two arbitrary parameters b1 and b2 and nonelastic
interaction (after collision one has a single kink). If we require that only one parameter (say b1)
is arbitrary and b2 = −b1, r1 = 0, then one gets

ut + r2(uxx − 2uux) + r3(uxxx − 3u2
x − 3uuxx + 3u2ux) = 0 (96)

which is a differentiated Burgers-type equation. Formula (88) gives a two-kink solution, which
interact inelastically. This solution is parametrized by the single parameter b1. Recall that
equation (96) can be linearized by the Hopf substitution u = −(ln f )x .

4. Conclusions

The dressing method discussed in this paper is a modification of the classical dressing method,
based on the ∂̄-problem [13–15]. Although the dressing method was originally developed for
nonlinear PDEs integrable by the inverse scattering problem, this modification allows one to
use the classical algorithm for construction of the particular solutions for nonintegrable systems
of PDE. In the above example we have constructed the general system of nonlinear PDEs (15),
(25) related with the given matrix equations (2)–(5), (18), (19) and introduced some reductions
of this system with particular solutions. Of course, examples of one- and two-soliton (kink)
equations, derived in sections 3.1 and 3.2 (equation (45) with (59)–(62) or (79)–(85) as well
as equations (75) and (94)–(96)) do not cover all possible equations of this type.

Note that the manifold of available solutions is not as large as the manifold of available
solutions in the classical dressing method. For instance, we have found only a single solution
for equation (45) with (59)–(62) (as well as for equation (45) with (79)–(85)). This is because
the type of particular solution affects the compatibility conditions (6), (20), which is one of
the factors determining nonlinear PDEs. However, the importance of the dressing method lies
not only in the construction of particular solutions, but also in revealing the link between the
system of nonlinear PDEs (equations (15), (25) in our case) and the auxiliary overdetermined
linear system of PDEs on the function ψ (equations (14), (24)), which has been derived
in the intermediate step of the algorithm. The nonlinear system can be considered as the
compatibility condition for the above linear system on the manifold of solutions, ψ , which is
implicitly specified by equations (6) and (20). A further problem might be the construction
of the operator representation for the compatibility condition of the overdetermined linear
system (14), (24), which would give rise to the operator representation for the nonlinear
system (15), (25) (similar to the zero-curvature representation for the classical integrable
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systems [11, 12]). However, importance of the operator representation in the nonintegrable
case is not evident.

There are several other methods for study of nonlinear PDEs without relation to the
complete integrability. The Hirota [22–25] and Painlevé [26–28] methods are well known in
this area. The difference between these two methods and the method discussed in this paper is
that both the Hirota and Painlevé methods deal with the nonlinear differential equation itself,
while dressing methods arrive at the nonlinear PDE only after some special procedure. One has
no criteria to check whether a given PDE can be treated by dressing method. However, dressing
methods exhibit many specific properties of the completely integrable equations, which are
difficult to determine by using Hirota and Painlevé methods. A similar situation exists in the
nonintegrable case, when the represented modification of the dressing method works. But the
properties of the nonintegrable PDE resulting from this method have not been presented yet.
This problem is left for future studies.

Basic analytical calculations were done using Mathematica.
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Appendix

Expressions for the coefficients, ri , of equation (45) in terms of parameters κij , γij and αi :

r1 = α1(2κ32(κ21 − κ11) + 3κ23(κ30 − κ40))− 2κ32(κ10 + κ20)

2κ32
(97)

r2 = (−1 + 2α2)κ22 + (3κ23(α1κ32 − α2κ41))/(2κ32) (98)

r3 = ((−2 + 3α2)κ23)/2 (99)

r4 = −(−6(1 + α3)κ23κ32 + α2
2(3γ31κ23 + (−2γ11 + κ23)κ32)

+α2(3α1γ41κ23 + 2(γ11 + κ23)κ32))/(2κ32) (100)

r5 = −(3α2
1γ41κ23 + 2γ10κ32 − 2(3 + 4α3)κ22κ32

+α1(3γ40κ23 + 2γ11κ32 − 4γ20κ32 + 9κ23κ32) + 6α3κ23κ41

+α2(3γ30κ23 + 6α1γ31κ23 + 2γ01κ32 − 2γ10κ32 − 4α1γ11κ32

+4κ22κ32 + 2α1κ23κ32 − 3κ23κ41))/(2κ32) (101)

r6 = −(2(γ20 − (4 + 3α3)κ23)κ32 + α2(3γ40κ23 + 3α1γ41κ23 − 4γ20κ32 + 7κ23κ32))/(2κ32)

(102)

r7 = (2(−γ00 + κ21)κ32 − α2
11(3γ31κ23 + (−2γ11 + κ23)κ32)

+α3(2(−κ11 + κ21)κ32 + 3κ23(κ30 − κ40))

+α1(−3γ30κ23 − 2γ01κ32 + 2γ10κ32 − 4κ22κ32 + 3κ23κ41))/(2κ32) (103)

r8 = (6(γ20 − 2κ23)κ32 − α3(6γ40κ23 + 9α1γ41κ23 + 2γ11κ32 − 8γ20κ32 + 16κ23κ32)

+α2(3γ40κ23 + 6α1γ41κ23 + 2γ11κ32 − 4γ20κ32 + 3κ23κ32

−2α3(3γ31κ23 − 2γ11κ32 + κ23κ32)))/(2κ32) (104)

r9 = (3α2
1γ41κ23 + 2(γ10 − κ22)κ32 + α1(3γ40κ23 + 2γ11κ32 − 4γ20κ32 + 3κ23κ32)

−α3(3γ30κ23 + 6α1γ31κ23 + 2γ01κ32 − 2γ10κ32 − 4α1γ11κ32

+4κ22κ32 + 2α1κ23κ32 − 3κ23κ41))/(2κ32) (105)



1802 A I Zenchuk

r10 = (2(−γ20 + κ23)κ32 + α3(3γ40κ23 + 6α1γ41κ23 + 2γ11κ32 − 4γ20κ32 + 3κ23κ32)

−α2
3(3γ31κ23 + (−2γ11 + κ23)κ32))/(2κ32) (106)

r11 = (−2κ21κ32 + α2(2(−κ11 + κ21)κ32

+3κ23(κ30 − κ40)) + α11(4κ22κ32 − 3κ23κ41))/(2κ32). (107)

Particular solution of system (53) with N = 1:

κ20 = (b3(2γ02 + 2γ11 + 2γ20 − κ13 − κ23)κ
3
32 − γ11κ

2
31κ41 + 2γ01κ31κ32κ41 + 2γ10κ31κ32κ41

−4γ00κ
2
32κ41 + 4κ21κ

2
32κ41 − γ11κ31κ

2
41 − γ20κ31κ

2
41 + 2γ10κ32κ

2
41

−2κ22κ32κ
2
41 − γ20κ

3
41 + κ23κ

3
41 − γ02κ

2
31(κ31 + κ41) + b2κ2

32(−(γ20κ31)

+3κ13κ31 + 4γ01κ32 + 4γ10κ32 − 2κ12κ32 − 2κ22κ32 − 5γ20κ41 + 3κ23κ41

−3γ11(κ31 + κ41)− γ02(5κ31 + κ41)) + bκ32(−3κ13κ
2
31 − 6γ01κ31κ32

−2γ10κ31κ32 + 4κ12κ31κ32 + 8γ00κ
2
32 − 4κ11κ

2
32 − 4κ21κ

2
32 + 2γ20κ31κ41

−2γ01κ32κ41 − 6γ10κ32κ41 + 4κ22κ32κ41 + 4γ20κ
2
41 − 3κ23κ

2
41

+2γ02κ31(2κ31 + κ41) + γ11(κ
2
31 + 4κ31κ41 + κ2

41)) + κ13κ
3
31 + 2γ01κ

2
31κ32

−2κ12κ
2
31κ32 − 4γ00κ31κ

2
32 + 4κ11κ31κ

2
32 − 8κ10κ

3
32)/(8κ

3
32) (108)

γ30 = (2γ31κ31κ32 − b2γ41κ
2
32 + (−(γ41κ31) + 2γ40κ32)κ41

+bκ32(−2(γ31 + γ40)κ32 + γ41(κ31 + κ41)))/(4κ
2
32). (109)

Particular solution of system (53) with N = 2:

κ20 = (b2
1b2(2γ11 + κ13 + κ23)κ

3
32 + b1b

2
2(2γ11 + κ13 + κ23)κ

3
32

−b2
1κ

2
32(2γ11κ31 + κ13κ31 + γ20(κ31 − κ41) + κ23κ41)

−b2
2κ

2
32(2γ11κ31 + κ13κ31 + γ20(κ31 − κ41) + κ23κ41)

−2(κ13κ
3
31 − γ10κ

2
31κ32 − κ12κ

2
31κ32 + 4κ10κ

3
32 + γ20κ

2
31κ41

+γ10κ32κ
2
41 − κ22κ32κ

2
41 − γ20κ

3
41 + κ23κ

3
41 + γ11κ

2
31(κ31 + κ41))

−2b1b2κ
2
32(2κ13κ31 − κ12κ32 − κ22κ32 + γ20(κ31 − κ41)

+2κ23κ41 + γ11(3κ31 + κ41)) + b1κ32(3κ13κ
2
31 − 2γ10κ31κ32 − 2κ12κ31κ32

+2γ10κ32κ41 − 2κ22κ32κ41 + 3κ23κ
2
41 + 2γ11κ31(2κ31 + κ41)

+γ20(κ
2
31 + 2κ31κ41 − 3κ2

41)) + b2κ32(3κ13κ
2
31 − 2γ10κ31κ32 − 2κ12κ31κ32

+2γ10κ32κ41 − 2κ22κ32κ41 + 3κ23κ
2
41 + 2γ11κ31(2κ31 + κ41)

+γ20(κ
2
31 + 2κ31κ41 − 3κ2

41)))/(8κ
3
32) (110)

κ21 = (−(γ02κ
2
31)− γ11κ

2
31 + 4γ00κ

2
32 + b2

1(γ20 − κ23)κ
2
32 + b2

2(γ20 − κ23)κ
2
32

−b1b2(γ02 + γ11 − γ20 + κ23)κ
2
32 − 4γ10κ32κ41 + 4κ22κ32κ41 + 3γ20κ

2
41

−3κ23κ
2
41 + b1κ32(γ02κ31 + γ11κ31 + 2γ10κ32 − 2κ22κ32 − 3γ20κ41 + 3κ23κ41)

+b2κ32(γ02κ31+γ11κ31+2γ10κ32−2κ22κ32−3γ20κ41 + 3κ23κ41))/(4κ
2
32) (111)

κ11 = (−(γ02κ
2
31)− 3κ13κ

2
31 + 4γ10κ31κ32 + 4κ12κ31κ32 + 4γ00κ

2
32 − b2

1(2γ11 + γ20 + κ13)κ
2
32

−b2
2(2γ11 + γ20 + κ13)κ

2
32 − b1b2(γ02 + 5γ11 + 3γ20 + κ13)κ

2
32 − 4γ20κ31κ41

−γ20κ
2
41 − γ11(2κ31 + κ41)

2 + b1κ32(γ02κ31 + 2γ20κ31 + 3κ13κ31 − 2γ10κ32

−2κ12κ32 + 3γ20κ41 + 3γ11(2κ31 + κ41)) + b2κ32(γ02κ31 + 2γ20κ31 + 3κ13κ31

−2γ10κ32 − 2κ12κ32 + 3γ20κ41 + 3γ11(2κ31 + κ41)))/(4κ
2
32) (112)

γ01 = (−(b1(γ02 + 2γ11 + γ20)κ32)− b2(γ02 + 2γ11 + γ20)κ32

+2(γ02κ31 − γ10κ32 + γ20κ41 + γ11(κ31 + κ41)))/(2κ32) (113)
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γ30 = ((b1 + b2)κ32(κ31 − κ41))/(2(κ31 − b1κ32 − b2κ32 + κ41)) (114)

γ31 = ((b1 + b2)κ
2
32)/(κ31 − b1κ32 − b2κ32 + κ41) (115)

γ40 = −γ31 (116)

γ41 = 0. (117)
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